NOVEL DERIVATIVES OF 1*H*-PYRROLO[3,2-C]QUINOLINE AS DUAL 5-HT₆/D₃R ANTAGONISTS WITH PROCOGNITIVE PROPERTIES

Katarzyna Grychowska,¹ Caroline Deville, ¹ Rafał Kurczab,² Grzegorz Satała,² Kamil Piska,³ Paulina Koczurkiewicz,³ Severine Chaumont-Dubel,⁴ Martyna Krawczyk,⁵ Elżbieta Pękala,³ Andrzej Bojarski,² Philippe Marin,⁴ Piotr Popik,⁵ and Paweł Zajdel¹

¹Department of Medicinal Chemistry, ³Department of Pharmaceutical Biochemistry Jagiellonian University Medical College, 9 Medyczna Str. 30-688 Kraków, Poland

²Department of Medicinal Chemistry, ⁵Department of Behavioral Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str. 31-343 Kraków, Poland

⁴Institute of Functional Genomics, CNRS UMR 5203, INSERM U661, Université de Montpellier, 141, Rue de la Cardonille 34094 Montpellier, France

Introduction

Cognitive impairment, which involves memory and attention disturbances, constitutes a common feature of various central nervous system disorders such as schizophrenia and Alzheimer's disease.¹ Although various procognitive drug candidates have been investigated in clinical trials for cognitive dysfunction, most of them failed to display clinically relevant effects. In the recent years serotonin 5-HT₆Rs and dopamine D_3 Rs have attracted considerable interest as pharmacological target for the treatment of cognitive decline. Both 5-HT₆ and D_3 Rs belong to GPCRs, coupled to adenyl cyclase. Additionally, their modulation engage mammalian target of rapamycin (mTOR) which play role in cognition and neurogenesis process. It has been demonstrated that 5-HT₆R and D_3 R antagonists modify the transmission of acetylcholine, glutamate, noradrenaline and dopamine. Moreover, the results of advanced preclinical and clinical trials indicate the role of serotonin 5-HT₆ and dopamine D_3 receptor antagonists, in the control of cognitive functions.

We have recently described compound CPPQ, a neutral 5-HT₆R antagonist. Since derivative CPPQ displayed low affinity for D_3Rs in the screening procedure, in the presented study it was used as a chemical template for the development of dual 5-HT₆/D₃ receptors antagonists. Herein, we report chemical synthesis of novel *N*-alkylated analogs of CPPQ, their biological evaluation, followed by determination of neuroprotective properties and evaluation of procognitive properties in novel object recognition test (NOR) in rats.

Biological results

Obtained compounds were evaluated in the radioligand binding assays for their affinity for $5-HT_6Rs$. Selected derivatives were tested in the screening procedure for their affinity for D₃ sites.

Cmpd	R ₁	X	R ₂	R/S	<i>K</i> _i [nM] ^a 5-ΗΤ ₆	%inh binding ^b D ₃
CPPQ	3-CI	-NH-	Н	S	3 ^c	69
8	3-Cl	-NH-	Et	R	NT	NT
9	3-CI	-NH-	Et	S	11	77
10	3-CI	-NH-	Pr	R	61	NT
11	3-CI	-NH-	Pr	S	17	87
12	3-CI	-0-	Pr	S	21	80
13	3-CI	-NH-	<i>c</i> PrMet	R	106	NT
14	3-CI	-NH-	<i>c</i> PrMet	S	41	NT
15	3-CI	-NH-	<i>iso</i> But	R	56	NT
16	3-CI	-NH-	<i>iso</i> But	S	27	98
17	3-CI	-NH-	2-MetBut	S	30	NT
18	3-F	-NH-	Pr	S	4	48
19	Н	-NH-	Pr	S	51	NT

^aMean K_i values, based on three independent binding experiments (SEM \leq 36%). ^bPercentage displacement values at 10⁻⁶ M; performed at Eurofins Cerep.^Cref. ²

Derivative **16** was further evaluated in NG108-15 neuroblastoma cell line transiently expressing 5-HT₆Rs, in order to determine its influence on receptors constitutive activity at Gs signalling (Fig. 1). Additionally, compound **16** was tested for its antagonist properties at D₃ sites in the screening procedure.

7a-7e

8-19

Reagents and conditions: (*i*) *t*-BuONa, DMF, RT, 2 h; (*ii*) H₂, Pd/C, MeOH, RT, 2 h; (*iii*) AcOH, *sec*-BuOH, 60 °C, 3 h; (*iv*) POCI₃, 105 °C, 4 h; (*v*) (*R*)-3-amino-1-Boc-pyrrolidine or (*S*)-3-amino-1-Boc-pyrrolidine, MeCN, MW 140 °C 7h or: 1. benzyl bromide, Cs_2CO_3 , DMF, RT, 30 min, 2. (*S*)-3-hydroxy-1-Boc-pyrrolidine, Pd₂(dba)₃, BINAP, *t*-BuOK, toluene, 3. O₂, DMSO, 70 °C, 1h; (*vi*) 1. arylsulfonyl chloride, BTPP, DCM, 0 °C – RT, 3 h, 2. 1M HCl/MeOH RT, 5h; (*vii*) aldehyde, NaBH₃CN, EtOH, RT, 12 h.

Docking studies

The crystal structure of D_3 receptor (PDB ID: 3PBL) was optimized using the induced-fit docking procedure and structure of compound **16**. Among all obtained complexes, several showing proper binding mode were selected and further optimized using QM/MM calculations (ligand and closest amino acid side chains were described by B3LYP/6-31++G*, the remaining part of the receptor was described by OPLS3 force field). The binding mode indicated the protonated pyrrolidine moiety created a salt bridge with D3.32, the 1*H*-pyrrolo[3,2-*c*]quinoline ring formed CH– π interaction with F6.51, the sulfonamide group formed a hydrogen bond with S5.43, and the terminal 3-chlorophenyl ring formed π – π interaction with H6.55.

Behavioral studies

Novel object recognition

Figure 1. Influence of compound **16** and Intepirdine on the 5-HT₆R constitutive activity at Gs signalling.

Cmpd	Κ _i [nM] ^a		antagonist effect ^c	<i>К</i> _і [nM] ^a				
	5-HT ₆	D_3	D ₃	5-HT_{1A}	5-HT _{2A}	5-HT ₇	D ₂	
16	27	30	82%	6155	1378	1437	296	

^aMean K_i values, based on three independent binding experiments (SEM \leq 36%). ^bMean K_b values (SEM \leq 22%) ^cPercentage displacement values at 10⁻⁶ M; performed at Eurofins Cerep.

Neuroprotection

The neuroprotective effect of compounds: **16**, CPPQ and reference – intepirdine was evaluated by means of DOX-induced toxicity in astrocytes model (CRL-2547). Treatment of astrocytes with the **16** and CPPQ affected the cytotoxicity caused by DOX exposition and prevented cells' viability reduction.

This paradigm is based on the spontaneous exploration of novel and familiar objects. Successful object recognition is indicated when an animal spends more time interacting with the novel object in the retention trial.

Since 5-HT₆Rs and D₃Rs antagonists reverse memory decline in animal models, procognitive properties of compound **16** were assessed in NOR task.

Acknowledgements

The study was financed from National Science Center, Grant No: UMO-2016/21/B/NZ7/01742 and grant-in-aid for young researchers, Grant No K/DSC/004286.

[1] Millan, M.J. *et. al. Nat. Rev. Drug Discov.* 11 (2012) 141–168. [2] Grychowska, K. *et al. ACS Chem. Neurosci* 20 (2016) 972–983

References

The cytotoxicity studies were performed using two independent viability assays, analyzing two different physiological parameters - LDH(B) and MTT(C).

Conclusions

Introduction of alkyl chains on the pyrrolidine nitrogen atom of CPPQ maintained high affinity fo 5-HT₆Rs and increased affinity for D₃ sites.
The study allowed for the identification of compound 16, classified as neutral antagonist of 5-HT₆Rs, which displayed antagonist properties at D₃ sites.
Derivative 16 showed good selectivity over other GPCRs tested.
Compound 16 as well as CPPQ prevented astrocytes against cell membrane damage induced by DOX and significantly increased its viability.
Compound 16 and CPPQ protected cells from the DOX-induced cellular metabolism impairment.
Following single administration, derivative 16 reversed phencyclidine (PCP) induced memory deficts in NOR test in rats at doses 1-3 mg/kg.

•Obtained results support therapeutic potential of dual 5-HT₆/D₃Rs antagonists in cognitive disorders.